{See Google Scholar page for the complete list.}
Peer-Reviewed Journal Publications:
88. W. Swain*, Y. Wang*, P. Parajuli*, M. Hay*, A. Saylam, T. Dreier, C. Schulz, and W. D. Kulatilaka. “Characterization of a High-Pressure Flame Facility Using High-Speed Chemiluminescence and OH LIF Imaging,” Experiments in Fluids, In Press (2023). https://doi.org/10.1007/s00348-023-03611-0.
87. Y. Quan, R. Shen, C. Schweizer*, P. Parajuli*, Z. Zhang, W. D. Kulatilaka, and Q. Wang, “Synergistic Effects of Zeolitic Imidazolate Frameworks (ZIFs) with Different Transition Metals on Intumescent Flame-Retarded Polypropylene Composites: A Comparative Study,” Journal of Materials Science & Technology, In Press (2023). https://doi.org/10.1016/j.jmst.2023.01.015.
86. Y. Fan, Z. Wang, Y. Wang*, M. Lee, W. D. Kulatilaka, and Y. Suzuki, “Effect of Thermal Dissociation in Rich Preheated Ammonia Micro Flames,” Proceedings of the Combustion Institute, 000 (2023) 1–10, https://doi.org/10.1016/j.proci.2022.07.267.
85. PParajuli*, Y. Wang*, M. Hay*, V. R. Katta, and W. D Kulatilaka, “Femtosecond Two-Photon LIF Imaging of Atomic Hydrogen in High-Pressure Methane-Air Flames,” Proceedings of the Combustion Institute, 000, 1–10 (2022), https://doi.org/10.1016/j.proci.2022.09.040.
84. M. Hay*, P. Parajuli*, W. D. Kulatilaka, “Simultaneous Detection of Three Chemical Species (NO, O, O2) Using a Single Broadband Femtosecond Laser,” Proceedings of the Combustion Institute, 000, 1–10 (2022), https://doi.org/10.1016/j.proci.2022.08.090.
83. C. Schweizer*, C. V. Mashuga, and W. D. Kulatilaka, “Investigation of Niacin and Aluminum Dust Cloud Ignition Characteristics in an Explosion Hazard Testing Device Using High-Speed Imaging,” Process Safety and Environmental Protection, 166, 320, (2022), https://doi.org/10.1016/j.psep.2022.08.018.
82. C. Schweizer*, C. V. Mashuga, and W. D. Kulatilaka, “Investigation of Aluminum Dust Cloud Dispersion Characteristics in an Explosion Hazard Testing Device Using Laser-Based Particle and Flow Diagnostics,” Process Safety and Environmental Protection, 166, 320, (2022), https://doi.org/10.1016/j.psep.2022.08.013.
81. N. Lamoureux, P. Parajuli*, W. D. Kulatilaka, and P. Desgroux, “Evaluation of LIF thermometry technique using Krypton as a tracer: Impact of laser lineshape and collisional bandwidth,” Proceedings of the Combustion Institute, 000, 1–10 (2022). https://doi.org/10.1016/j.proci.2022.07.123.
80. J. A Rogers, N. Bass, P. T. Mead, A. Mote, G. D Lukasik*, M. Intardonato, K. Harrison, J. D Leaverton, K. Raj Kota, J. W Wilkerson, J.N. Reddy, W. D. Kulatilaka, T. E. Lacy Jr., “The Texas A&M University Hypervelocity Impact Laboratory: A Modern Aeroballistic Range Facility,” Review of Scientific Instruments, 93, 085106 (2022), https://doi.org/10.1063/5.0088994.
79. J. A. Rogers, A. Mote, P. T. Mead, K. Harrison, G. D. Lukasik*, K. R. Kota, W. D. Kulatilaka, J. W. Wilkerson, T. E. Lacy Jr., “Hypervelocity Impact Response of Monolithic UHMWPE and HDPE Plates,” International Journal of Impact Engineering, 161, 104081 (2022), https://doi.org/10.1016/j.ijimpeng.2021.104081.
78. M. Falconieri, D. Tedeschi, S. Gagliardi, F. Rondino, M. Marrocco, W. D. Kulatilaka, “Toward Gas-Phase Thermometry Using Pure-Rotational Impulsive Stimulated Raman Scattering Spectroscopy with a Low-Energy Femtosecond Oscillator,” Applied Sciences, 12, 12710 (2022). https://doi.org/10.3390/app122412710.
77. M. A. Turner, P. Parajuli*, W. D. Kulatilaka, and E. L. Petersen, “Emission Spectra of Hydrocarbon Flames Doped with Phosphorus-Containing Compounds, Journal of Thermophysics and Heat Transfer, 36, 685 (2022), https://doi.org/10.2514/1.T6457.
76. M. Falconieri, S. Gagliardi, F. Rondino, M. Marrocco, W. D. Kulatilaka, “Study of Impulsive Stimulated Raman Scattering Effects Using the Femtosecond Pump-Probe Z-Scan Technique,” Applied Sciences, 11, 11667 (2021) https://doi.org/10.3390/app112411667.
75. M. A. Turner, T. T. Paschal*, P. Parajuli*, W. D. Kulatilaka, E. L. Petersen, “Application of High-Speed, Species-Specific Chemiluminescence Imaging for Laminar Flame Speed Measurements in Spherically Expanding Flames,” Experimental Thermal and Fluid Science 129, 110477 (2021). https://doi.org/10.1016/j.expthermflusci.2021.110477.
74. P. Parajuli*, T. T. Paschal*, M. A. Turner, Y. Wang*, E. L. Petersen, and W. D. Kulatilaka, “High-Speed Hydroxyl and Methylidyne Chemiluminescence Imaging Diagnostics in Spherically Expanding Flames,” AIAA Journal, 59(8) 3118–3126. (2021). https://doi.org/10.2514/1.J060103.
73. A. Jain*, Y. Wang*, and W. D. Kulatilaka, “Simultaneous Imaging of H and OH in Flames Using a Single Broadband Femtosecond Laser Source,” Proceedings of the Combustion Institute, 38, 1813–1821 (2021). https://doi.org/10.1016/j.proci.2020.07.137.
72. S. Prasad, C. Schweizer*, P. Bagaria, W. D Kulatilaka, C. V. Mashuga, “Effect of Particle Morphology on Dust Cloud Dynamics,” Powder Technology, 379, 89–95 (2021). https://doi.org/10.1016/j.powtec.2020.10.058.
71. S. Prasad, C. Schweizer*, P. Bagaria, A. Saini, W. D. Kulatilaka, C. V. Mashuga, “Investigation of Particle Density on Dust Cloud Dynamics in a Minimum Ignition Energy Apparatus using Digital In-Line Holography,” Powder Technology, 384, 297–303 (2021). https://doi.org/10.1016/j.powtec.2021.02.026.
70. Y. Wang*, A. Jain*, C. Schweizer*, and W. D. Kulatilaka, “OH, PAH, and Sooting Imaging in Piloted Liquid-Spray Flames of Diesel and Diesel Surrogate,” Combustion and Flame, 231, 11479 (2021). https://doi.org/10.1016/j.combustflame.2021.111479.
69. M. A. Turner, P. Parajuli*, W. D. Kulatilaka, and E. L. Petersen, “Resolving Flame Thickness Using High-Speed Chemiluminescence Imaging of OH* and CH* in Spherically Expanding Methane-Air Flames.” Proceedings of the Combustion Institute, 38, 2101–2108 (2021). https://doi.org/10.1016/j.proci.2020.07.112.
68. M. Falconieri, S. Gagliardi, F. Rondino, M. Marrocco, W. D. Kulatilaka, “High-Sensitivity Impulsive Stimulated Raman Spectrometer with Fast Data Acquisition,” Journal of Raman Spectroscopy,” 52, 664–669 (2020). https://doi.org/10.1002/jrs.6048.
67. C. Schweizer*, S. Prasad, A. Saini, G. Koehm, C. Mashuga, and W. D. Kulatilaka, “High-Speed Digital In-Line Holography for In-Situ and Transient Dust Dispersion Characterization in Minimum Ignition Energy Device,” Powder Technology, 376, 612–621 (2020). https://doi.org/10.1016/j.powtec.2020.08.042.
66. A, Jain*, Y. Wang*, and W. D. Kulatilaka, “Hydroxyl Radical Planar Laser-Induced Fluorescence Imaging in Flames Using Frequency-Tripled Femtosecond Laser Pulses,” Optics Letters, 17, 4690–4693 (2020). https://doi.org/10.1364/OL.400930.
65. Y. Wang, Y. Wang*, J. Wang, Z. Yi, W. D. Kulatilaka, A. V. Sokolov, and M. O. Scully, “Femtosecond Pump-Probe Studies of Atomic Hydrogen Superfluorescence in Flames,” Applied Physics Letters, 116, 210102 (2020). https://doi.org/10.1063/5.0001924.
64. Y. Wang*, A. Jain*, and W. D. Kulatilaka, “Simultaneous Measurement of OH and CO in Flames using a Single Broadband, Femtosecond Laser Pulse,” Combustion and Flame, 214, 358–360 (2020). https://doi.org/10.1016/j.combustflame.2020.01.002.
63. O. Mathieu, T. Sikes, W. D. Kulatilaka, and E. L. Petersen, “Ignition Delay Time and Laminar Flame Speed Measurements of Mixtures Containing Diisopropyl-Methylphosphonate (DIMP),” Combustion and Flame, 215, 66–77 (2020). https://doi.org/10.1016/j.combustflame.2020.01.018.
62. A. Jain*, Y. Wang*, and W. D. Kulatilaka, “Three-Photon-Excited Laser-Induced Fluorescence (3pLIF) Detection of Atomic Hydrogen in Flames,” Optics Letters, 44, 5945–5948 (2019). https://doi.org/10.1364/OL.44.005945.
61. Y. Wang*, S. Taghizadeh, A. S. Karichedu, W. D. Kulatilaka, and D. Jarrahbashi, “Piloted Liquid Spray Flames: A Numerical and Experimental Study,” Combustion Science and Technology, (2019). https://doi.org/10.1080/00102202.2019.1629431.
60. Y. Wang*, A. Jain*, and W. D. Kulatilaka, “Hydroxyl Radical Planar Imaging in Flames using Femtosecond Laser Pulses,” Applied Physics B, 125:90 (2019). https://doi.org/10.1007/s00340-019-7203-2.
59. M. O’Neil*, A. Demko, E. L. Petersen, and W. D. Kulatilaka, “Ultrashort-Pulse LIBS for Detecting Airborne Metals During Energetic Reactions,” Applied Optics, 58, C79–C83 (2019). https://doi.org/10.1364/AO.58.000C79.
58. Y. Wang*, and W. D. Kulatilaka, “Spectroscopic Investigation of High-Pressure Femtosecond Two-Photon LIF of CO up to 20 bar,” Applied Optics, 58, C23–C29 (2019). https://doi.org/10.1364/AO.58.000C23.
57. Y. Wang*, A. Jain*, and W. D. Kulatilaka, “CO Imaging in Piloted Liquid-Spray Flames Using Femtosecond Two-Photon LIF,” Proceedings of the Combustion Institute, 37, 1305–1312 (2019). https://doi.org/10.1016/j.proci.2018.05.016.
56. A. Jain*, Y. Wang*, and W. D. Kulatilaka, “Effect of H-atom Concentration on Soot Formation in Premixed Ethylene/Air Flat Flames,” Proceeding of the Combustion Institute, 37, 1289–1296 (2019). https://doi.org/10.1016/j.proci.2018.07.093.
55. T. Sikes*, O. Mathieu, W. D. Kulatilaka, M. S. Mannan, and E. L. Petersen, “Laminar Flame Speeds of DEMP, DMMP, and TEP Added to H2– and CH4-Air Mixtures,” Proceedings of the Combustion Institute, 37, 3775–3781 (2019). https://doi.org/10.1016/j.proci.2018.05.042.
54. O. Mathieu, W. D. Kulatilaka, and E. L. Petersen, “Shock-Tube Studies of Sarin Surrogates,” Shock Waves, 29, 441 –449 (2019). https://doi.org/10.1007/s00193-018-0841-1.
53. M. O. O’Neil*, N. A. Niemiec*, A. Demko, E. L. Petersen, and W, D. Kulatilaka, “Laser-Induced-Breakdown-Spectroscopy-Based Detection of Metal Particles Released into the Air During Combustion of Solid Propellants,” Applied Optics, 57, 1910–1917 (2018), https://doi.org/10.1364/AO.57.001910. (***Editor’s Pick***).
52. O. Mathieu, W. D Kulatilaka, and E. L. Petersen, “Experimental and Modeling Study on the Effects of Dimethyl Methylphosphonate (DMMP) Addition on H2, CH4, and C2H4 Ignition, Combustion and Flame, 191, 320–334 (2018). https://doi.org/10.1016/j.combustflame.2018.01.020.
51. Y. Wang* and W. D. Kulatilaka, “Detection of Carbon Monoxide (CO) in Sooting Hydrocarbon Flames Using Femtosecond Two-Photon Laser-Induced Fluorescence,” Applied Physics B, 124:8 (2018). https://doi.org/10.1007/s00340-017-6878-5.
50. N. J. DeLuca, R. B. Miles, N. Jiang, W. D. Kulatilaka, A. K. Patnaik, and J. R. Gord, “FLEET Velocimetry for Combustion and Flow Diagnostics,” Applied Optics, 56, 8632–8638 (2017). https://doi.org/10.1364/AO.56.008632.
49. T. Seeger, T. Dreier, W. Chen, S. Kearny, and W. D. Kulatilaka, “Laser Applications to Chemical, Security, and Environmental Analysis: Introduction to the Feature Issue,” Applied Optics, 56, LAC1– LAC3 (2017). https://doi.org/10.1364/AO.56.00LAC1.
48. Y. Wang* and W. D. Kulatilaka, “Optical Ray Tracing Simulations of Nonlinear Laser Diagnostics in Turbulent Media,” Applied Optics, 56, E106–E115 (2017). https://doi.org/10.1364/AO.56.00E106.
47. Y. Wang*, C. Capps*, and W. D. Kulatilaka, “Femtosecond Two-Photon Laser-Induced Fluorescence of Krypton for High-Speed Flow Imaging,” Optics Letters, 4, 711–714 (2017). https://doi.org/10.1364/OL.42.000711.
46. W. D. Kulatilaka and R. P. Lucht, “Two-Photon-Absorption Line Strengths for Nitric Oxide: Comparison of Theory and Sub-Doppler, Laser-Induced Fluorescence Measurements,” Journal of Chemical Physics, 146, 124311:1–22 (2017). https://doi.org/10.1063/1.4978921.
45. J. B. Schmidt, S. Roy, W. D. Kulatilaka, I. Shkurenkov, I. V. Adamovich, W. R. Lempert, and J. R. Gord, “Femtosecond, Two-Photon-Absorption, Laser-Induced-Fluorescence (fs-TALIF) Imaging of Atomic Hydrogen and Oxygen in Non-Equilibrium Plasmas,” Journal of Physics D: Applied Physics, 50, 015204 (2016). https://doi.org/10.1088/1361-6463/50/1/015204.
44. W. D. Kulatilaka, S. Roy, N. Jiang, and J. R. Gord, “Photolytic-Interference-Free, Femtosecond Two-Photon Laser-Induced Fluorescence Imaging of Atomic Oxygen in Flames,” Applied Physics B, 122:26 (2016). https://doi.org/10.1007/s00340-016-6330-2.
43. H. U. Stauffer, P. J. Wrzesinski, S. Roy, W. D. Kulatilaka, and J. R. Gord, “Collision-Independent Detection of Molecular Two-Photon Excitation by Time-Resolved Parametric Four-Wave Mixing,” Journal of Raman Spectroscopy, 47, 1124 (2015). https://doi.org/10.1002/jrs.4872.
42. J. B. Schmidt, B. L. Sands, W. D. Kulatilaka, S. Roy, J. Scofield, and J. R. Gord, “Femtosecond, Two-Photon Laser-Induced Fluorescence Imaging of Atomic Oxygen in an Atmospheric-Pressure Plasma Jet,” Plasma Sources Science and Technology, 24, 032004 (2015). https://doi.org/10.1088/0963-0252/24/3/032004.
41. C. Hall, W. D. Kulatilaka, N. Jiang, J. R. Gord, R. W. Pitz, “Minor-Species Structure of Premixed Cellular Tubular Flames,” Proceedings of the Combustion Institute, 35, 1107–1114 (2015). https://doi.org/10.1016/j.proci.2014.05.108.
40. C. Hall, W. D. Kulatilaka, J. R. Gord, R. W. Pitz, “Quantitative Atomic Hydrogen Measurements in Premixed Hydrogen Tubular Flames,” Combustion and Flame, 161, 2924–2932 (2014). https://doi.org/10.1016/j.combustflame.2014.05.015.
39. W. D. Kulatilaka, J. R. Gord, and S. Roy, “Femtosecond Two-Photon LIF Imaging of Atomic Species Using a Frequency-Quadrupled Ti: Sapphire Laser,” Applied Physics B, 116, 7–13 (2014). https://doi.org/10.1007/s00340-014-5845-7.
38. P. J. Wrzesinski, H. U. Stauffer, W. D. Kulatilaka, J. R. Gord, and S. Roy, “Time-Resolved Femtosecond CARS from 10 to 50 bar: Collisional Sensitivity,” Journal of Raman Spectroscopy, 44, 1344–1348 (2013). https://doi.org/10.1002/jrs.4287.
37. P. S. Hsu, W. D. Kulatilaka, J. R. Gord, S. Roy, “Single-Shot Thermometry using Fiber-Coupled Picosecond Coherent Anti-Stokes Raman Scattering (CARS) Spectroscopy,” Journal of Raman Spectroscopy, 44, 1330–1335 (2013). https://doi.org/10.1002/jrs.4280.
36. S. Roy, N. Jiang, H. U. Stauffer, J. B. Schmidt, W. D. Kulatilaka, T. R. Meyer, C. E. Bunker, J. R. Gord, “Spatially and Temporally Resolved Temperature and Shock-Speed Measurements Behind a Laser-Induced Blast Wave of Energetic Nanoparticles,” Journal of Applied Physics, 113, 184310 (2013). https://doi.org/10.1063/1.4804410.
35. P. S. Hsu, W. D. Kulatilaka, S. Roy, J. R. Gord, “Investigation of Optical Fibers for High-Repetition-Rate, Ultraviolet Planar Laser-Induced Fluorescence of OH,” Applied Optics, 52, 3108–3115 (2013). https://doi.org/10.1364/AO.52.003108.
34. D. R. Richardson, R. P. Lucht, W. D. Kulatilaka, S. Roy, and J. R. Gord, “Chirped-Probe-Pulse Femtosecond Coherent Anti-Stokes Raman Scattering Concentration Measurements,” Journal of the Optical Society of American B, 30, 188–196 (2013). https://doi.org/10.1364/JOSAB.30.000188.
33. S. Roy, P. S. Hsu, N. Jiang, J. R. Gord, W. D. Kulatilaka, H. U. Stauffer, and J. R. Gord, “Direct Measurements of Collisionally Broadened Raman Linewidths of CO2 S-Branch Transitions,” Journal of Chemical Physics, 138, 024201 (2013). https://doi.org/10.1063/1.4774093.
32. W. D. Kulatilaka, J. R. Gord, V. R. Katta, and S. Roy, “Photolytic-Interference-Free, Femtosecond Two-Photon fluorescence Imaging of Atomic Hydrogen,” Optics Letters, 37, 3051–3053 (2012). https://doi.org/10.1364/OL.37.003051.
31. P. S. Hsu, W. D. Kulatilaka, N. Jiang, J. R. Gord, and S. Roy, “Investigation of Optical Fibers for Gas-Phase, Ultraviolet Laser-Induced-Fluorescence (UV-LIF) Spectroscopy,” Applied Optics, 18, 4047–4057 (2012). https://doi.org/10.1364/AO.51.004047.
30. H. U. Stauffer, W. D. Kulatilaka, J. R. Gord, and S. Roy, “Detailed Calculation of Far-From-Resonance Two-Photon Hydroxyl (OH) Radical Excitation Via Broadband Ultrafast Excitation,” Journal of Optical Society of America B, 29, 40–52 (2012). https://doi.org/10.1364/JOSAB.29.000040.
29. W. D. Kulatilaka, H. U. Stauffer, J. R. Gord, and S. Roy, “One-Dimensional Single-Shot Thermometry in Flames using Femtosecond-CARS Line Imaging,” Optics Letters, 36, 4182–4184 (2011). https://doi.org/10.1364/OL.36.004182.
28. W. D. Kulatilaka, P. S. Hsu, J. R. Gord, and S. Roy, “Point and Planar Ultraviolet Excitation/Detection of OH-Radical Laser-Induced Fluorescence (LIF) through Long Optical Fibers,” Optics Letters, 36, 1818–1820 (2011). https://doi.org/10.1364/OL.36.001818.
27. H. U. Stauffer, W. D. Kulatilaka, J. R. Gord, and S. Roy “Laser-Induced-Fluorescence Detection of Hydroxyl (OH) Radical by Femtosecond Excitation,” Optics Letters, 36 1776–1778 (2011). https://doi.org/10.1364/OL.36.001776.
26. D. R. Richardson, R. P. Lucht, W. D. Kulatilaka, S. Roy, and James R. Gord, “Theoretical Modeling of Single-Laser-Shot, Chirped-Probe Pulse Femtosecond Coherent Anti-Stokes Raman Scattering Thermometry” Applied Physics B 104, 699–714 (2011). https://doi.org/10.1007/s00340-011-4489-0.
25. H. U. Stauffer, W. D. Kulatilaka, P. S. Hsu, J. R. Gord, and S. Roy, “Gas-Phase Thermometry Using Delayed-Probe-Pulse Picosecond Coherent Anti-Stokes Raman Scattering Spectra of H2,” Applied Optics, 50, A38–A48 (2011). https://doi.org/10.1364/AO.50.000A38.
24. D. R. Richardson, R. P. Lucht, S. Roy, W. D. Kulatilaka, and J. R. Gord, “Single-Laser-Shot Femtosecond Coherent Anti-Stokes Raman Scattering Thermometry at 1000 Hz in Unsteady Flames,” Proceedings of the Combustion Institute, 33, 839–845 (2011). https://doi.org/10.1016/j.proci.2010.05.060.
23. W. D. Kulatilaka, J. R. Gord, and S. Roy, “Effects of O2-CO2 Polarization Beating on Femtosecond Coherent Anti-Stokes Raman Scattering (fs-CARS) Spectroscopy of O2,” Applied Physics B, 102, 141–147 (2011). https://doi.org/10.1007/s00340-010-4188-2.
22. W. D. Kulatilaka, P. S. Hsu, H. U. Stauffer, J. R. Gord, and S. Roy, “Direct Measurement of Rotationally Resolved H2 Q-Branch Raman Coherence Lifetimes Using Time-Resolved Picosecond Coherent Anti-Stokes Raman Scattering,” Applied Physics Letters, 97, 081112 (2010). https://doi.org/10.1063/1.3483871.
21. P. S. Hsu, A. K. Patnaik, J. R. Gord, T. R. Meyer, W. D. Kulatilaka, and S. Roy, “Investigation of Optical Fibers for Coherent Anti-Stokes Raman Scattering (CARS) Spectroscopy in Reacting Flows,” Experiments in Fluids, 49, 969–984 (2010). https://doi.org/10.1007/s00348-010-0961-6.
20. N. Chai, R. P. Lucht, W. D. Kulatilaka, S. Roy, and J. R. Gord, “Electronic-Resonance-Enhanced Coherent Anti-Stokes Raman Scattering of Nitric Oxide: Saturation and Stark effects,” Journal of Chemical Physics, 133, 084310 1–20 (2010). https://doi.org/10.1063/1.3474702.
19. S. Roy, W. D. Kulatilaka, D. R. Richardson, R. P. Lucht, and J. R. Gord, “Gas-Phase Single-Shot Thermometry at 1 kHz Using fs-CARS Spectroscopy” Optics Letters, 34, 3857–3859 (2009). https://doi.org/10.1364/OL.34.003857.
18. W. D. Kulatilaka, J. H. Frank, B. D. Patterson, and T. B. Settersten, “Analysis of 205-nm Photolytic Production of Atomic Hydrogen in Methane Flames,” Applied Physics B, 97, 227–242 (2009). https://doi.org/10.1007/s00340-009-3474-3.
17. S. W. Schefer, W. D. Kulatilaka, B. D. Patterson, and T. B. Settersten, “Visible Emission of Hydrogen Flames,” Combustion and Flame, 156, 1234–1241 (2009). https://doi.org/10.1016/j.combustflame.2009.01.011.
16. S. V. Naik, W. D Kulatilaka, K. K. Venkatesan, and R. P. Lucht, “Pressure, Temperature, and Velocity Measurements in Underexpanded Jets Using Laser-Induced Fluorescence Imaging,” AIAA Journal, 47, 839–849 (2009). https://doi.org/10.2514/1.37343.
15. C. Tseng, D. M. Voytovych, W. D. Kulatilaka, A. H. Bhuiyan, R. P. Lucht, C. L. Merkle, J. R. Hulka, and G. W. Jones, “Structure and Mixing of a Transient Flow of Helium Injected into an Established Flow of Nitrogen: two-dimensional measurement and simulation,” Experiments in Fluids, 46, 559–575 (2009). https://doi.org/10.1007/s00348-008-0581-6.
14. W. D. Kulatilaka, J. H. Frank, and T. B. Settersten, “Interference-Free Two-Photon LIF Imaging of Atomic Hydrogen in Flames Using Picosecond Excitation,” Proceedings of the Combustion Institute, 32, 955–962 (2009). https://doi.org/10.1016/j.proci.2008.06.125.
13. W. D. Kulatilaka, B. D. Patterson, J. H. Frank, and T. B. Settersten, “Comparison of Nanosecond and Picosecond Excitation for Interference-Free Two-Photon Laser-Induced Fluorescence Detection of Atomic Hydrogen in Flames,” Applied Optics, 47, 4672–4683 (2008). https://doi.org/10.1364/AO.47.004672.
12. J. P. Kuehner, S. V. Naik, W. D. Kulatilaka, N. Chai, N. M. Laurendeau, R. P. Lucht, M. O. Scully, S. Roy, A. K. Patnaik, and J. R. Gord, “Perturbative Theory and Modeling of Electronic-Resonance-Enhanced Coherent Anti-Stokes Raman Scattering Spectroscopy of Nitric Oxide,” Journal of Chemical Physics, 128, 174308 1–12 (2008). https://doi.org/10.1063/1.2909554.
11. W. D. Kulatilaka, S. V. Naik, and R. P. Lucht, “Development of High-Spectral-Resolution Planar Laser-Induced Fluorescence Imaging Diagnostics for High-Speed Gas Flows,” AIAA Journal, 46, 17–20 (2008). https://doi.org/10.2514/1.34971.
10. N. Chai, S. V. Naik, W. D. Kulatilaka, N. M. Laurendeau, R. P. Lucht, S. Roy, and J. R. Gord, “Detection of Acetylene by Electronic Resonance-Enhanced Coherent Anti-Stokes Raman Scattering,” Applied Physics B, 87, 731–737 (2007). https://doi.org/10.1007/s00340-007-2650-6.
09. N. Chai, W. D. Kulatilaka, S. V. Naik, N. M. Laurendeau, R. P. Lucht, J. P. Kuehner, S. Roy, V. R. Katta, and J. R. Gord, “Nitric Oxide Concentration Measurements in Atmospheric Pressure Flames Using Electronic-Resonance-Enhanced Coherent Anti-Stokes Raman Scattering,” Applied Physics B, 88, 141–150 (2007). https://doi.org/10.1007/s00340-007-2647-1.
08. W. D. Kulatilaka, R. P. Lucht, S. Roy, S., J. R. Gord, and T. B. Settersten, “Detection of Atomic Hydrogen in Flames Using Picosecond, Two-Color, Two-Photon-Resonant Six-Wave-Mixing Spectroscopy,” Applied Optics, 46, 3921–3927 (2007). https://doi.org/10.1364/AO.46.003921.
07. W. D. Kulatilaka, N. Chai, S. V. Naik, S. Roy, N. M. Laurendeau, R. P. Lucht, J. P. Kuehner, and J. R. Gord, “Effects of Pressure Variations on Electronic-Resonance-Enhanced Coherent Anti-Stokes Raman Scattering of Nitric Oxide,” Optics Communications, 274, 441–446 (2007). https://doi.org/10.1016/j.optcom.2007.02.022.
06. W. D. Kulatilaka, N. Chai, S. V. Naik, N. M. Laurendeau, R. P. Lucht, S. Roy, and J. R. Gord, “Measurement of Nitric Oxide Concentrations in Flames by Using Electronic-Resonance-Enhanced Coherent Anti-Stokes Raman Scattering,” Optics Letters, 31, 3357–3359 (2006). https://doi.org/10.1364/OL.31.003357.
05. S. Roy, W. D. Kulatilaka, S. V. Naik, N. M. Laurendeau, R. P. Lucht, and J. R. Gord, “Effects of Quenching on Electronic-Resonance-Enhanced Coherent Anti-Stokes Raman Scattering of Nitric Oxide” Applied Physics Letters, 89, 104105 1–3 (2006). https://doi.org/10.1063/1.2338014.
04. W. D. Kulatilaka, T. N. Anderson, T. L. Bougher, and R. P. Lucht, “Development of Injection-Seeded, Pulsed Optical Parametric Generator Systems for High-Resolution Spectroscopy,” Applied Physics B, 80, 669–680 (2005). https://doi.org/10.1007/s00340-005-1772-y.
03. W. D. Kulatilaka, R. P. Lucht, S. F. Hanna, and V. R. Katta, “Two-Color, Two-Photon Laser-Induced Polarization Spectroscopy (LIPS) Measurements of Atomic Hydrogen in Near-Adiabatic, Atmospheric Pressure Hydrogen/Air Flames,” Combustion and Flame, 137, 523–537 (2004). https://doi.org/10.1016/j.combustflame.2004.03.009.
02. S. F. Hanna, W. D. Kulatilaka, Z. Arp, T. Opatrny, M. O. Scully, J. P. Kuehner, and R. P. Lucht, “Electronic-Resonance-Enhanced (ERE) Coherent Anti-Stokes Raman Scattering (CARS) Spectroscopy of Nitric Oxide,” Applied Physics Letters, 83, 1887–1889 (2003). https://doi.org/10.1063/1.1604947.
01. S. Roy, W. D. Kulatilaka, R. P. Lucht, N. G. Glumac, and T. Hu, “Temperature Profile Measurements in the Near-Substrate Region of Low-Pressure Diamond-Forming Flames,” Combustion and Flame, 130, 261–276 (2002). https://doi.org/10.1016/S0010-2180(02)00379-6.